skip to main content


Search for: All records

Creators/Authors contains: "Li, Jianan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Strongly correlated electronic systems exhibit a wealth of unconventional behavior stemming from strong electron-electron interactions. The LaAlO3/SrTiO3(LAO/STO) heterostructure supports rich and varied low-temperature transport characteristics including low-density superconductivity, and electron pairing without superconductivity for which the microscopic origins is still not understood. LAO/STO also exhibits inexplicable signatures of electronic nematicity via nonlinear and anomalous Hall effects. Nanoscale control over the conductivity of the LAO/STO interface enables mesoscopic experiments that can probe these effects and address their microscopic origins. Here we report a direct correlation between electron pairing without superconductivity, anomalous Hall effect and electronic nematicity in quasi-1D ballistic nanoscale LAO/STO Hall crosses. The characteristic magnetic field at which the Hall coefficient changes directly coincides with the depairing of non-superconducting pairs showing a strong correlation between the two distinct phenomena. Angle-dependent Hall measurements further reveal an onset of electronic nematicity that again coincides with the electron pairing transition, unveiling a rotational symmetry breaking due to the transition from paired to unpaired phases at the interface. The results presented here highlights the influence of preformed electron pairs on the transport properties of LAO/STO and provide evidence of the elusive pairing “glue” that gives rise to electron pairing in SrTiO3-based systems.

     
    more » « less
  2. Abstract

    The formation of the first supermassive black holes is expected to have occurred in some most pronounced matter and galaxy overdensities in the early universe. We have conducted a submillimeter wavelength continuum survey of 54z∼ 6 quasars using the Submillimeter Common-User Bolometre Array-2 on the James Clerk Maxwell Telescope to study the environments aroundz∼ 6 quasars. We identified 170 submillimeter galaxies (SMGs) with above 3.5σdetections in 450 or 850μm maps. Their far-IR luminosities are (2.2–6.4) × 1012L, and their star formation rates are ∼400–1200Myr−1. We also calculated the SMGs’ differential and cumulative number counts in a combined area of ∼620 arcmin2. To a 4σdetection (at ∼5.5 mJy), SMGs’ overdensity is0.680.19+0.21(±0.19), exceeding the blank-field source counts by a factor of 1.68. We find that 13/54 quasars show overdensities (at ∼5.5 mJy) ofδSMG∼ 1.5–5.4. The combined area of these 13 quasars exceeds the blank-field counts with the overdensity to 5.5 mJy ofδSMG2.460.55+0.64(±0.25) in the regions of ∼150 arcmin2. However, the excess is insignificant on the bright end (e.g., 7.5 mJy). We also compare results with previous environmental studies of Lyαemitters and Lyman break galaxies on a similar scale. Our survey presents the first systematic study of the environment of quasars atz∼ 6. The newly discovered SMGs provide essential candidates for follow-up spectroscopic observations to test whether they reside in the same large-scale structures as the quasars and search for protoclusters at an early epoch.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Abstract We report deep Karl G. Jansky Very Large Array (VLA) observations of the optically ultraluminous and radio-quiet quasar SDSS J010013.02+280225.8 (hereafter J0100+2802) at redshift z = 6.3. We detected the radio continuum emission at 1.5 GHz, 6 GHz, and 10 GHz. This leads to a radio power-law spectral index of α = −0.52 ± 0.18 ( S ∝ ν α ). The radio source is unresolved in all VLA bands with an upper limit to the size of 0.″2 (i.e., ∼1.1 kpc) at 10 GHz. We find variability in the flux density (increase by ∼33%) and the spectral index (steepened) between observations in 2016 and 2017. We also find that the VLA 1.5 GHz flux density observed in the same year is 1.5 times that detected with the Very Long Baseline Array (VLBA) in 2016 at the same frequency. This difference suggests that half of the radio emission from J0100+2802 comes from a compact core within 40 pc, and the rest comes from the surrounding few-kiloparsec area, which is diffuse and resolved out in the VLBA observations. The diffuse emission is 4 times brighter than what would be expected if driven by star formation. We conclude that the central active galactic nucleus is the dominant power engine of the radio emission in J0100+2802. 
    more » « less
  4. We investigate the molecular gas content of z  ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C  I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C  II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z  ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust  ∼ 47 K and an optical depth τ ν  = 0.2 at the [C  II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C  I ], or [C  II ] emission yields mass estimates of the entire sample in the range M H2  ∼ 10 10 –10 11 M ⊙ . We compared the observed luminosities of dust, [C  II ], [C  I ], and CO(7–6) with predictions from photo-dissociation and X-ray dominated regions. We find that the former provide better model fits to our data, assuming that the bulk of the emission arises from dense ( n H  > 10 4 cm −3 ) clouds with a column density N H  ∼ 10 23 cm −2 , exposed to a radiation field with an intensity of G 0  ∼ 10 3 (in Habing units). Our analysis reiterates the presence of massive reservoirs of molecular gas fueling star formation and nuclear accretion in z  ∼ 6 quasar host galaxies. It also highlights the power of combined 3 mm and 1 mm observations for quantitative studies of the dense gas content in massive galaxies at cosmic dawn. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    The quest to understand, design, and synthesize new forms of quantum matter guides much of contemporary research in condensed matter physics. One-dimensional (1D) electronic systems form the basis for some of the most interesting and exotic phases of quantum matter. Here, we describe a family of quasi-1D nanostructures, based on LaAlO 3 /SrTiO 3 electron waveguides, in which a sinusoidal transverse spatial modulation is imposed. These devices display unique dispersive features in the subband spectra, namely, a sizeable shift (∼7 T) in the spin-dependent subband minima, and fractional conductance plateaus. The first property can be understood as an engineered spin-orbit interaction associated with the periodic acceleration of electrons as they undulate through the nanowire (ballistically), while the second property signifies the presence of enhanced electron-electron scattering in this system. The ability to engineer these interactions in quantum wires contributes to the tool set of a 1D solid-state quantum simulation platform. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)